VARIABLE ROBUSTNESS CONTROL:

PRINCIPLES and ALGORITHMS

Marco C. Campi

Simone Garatti

thanks to:

Giuseppe Calafiore

Simone Garatti

PART I: Principles

Optimization

- controller synthesis
- noise compensation
- prediction

optimization program

Uncertainty

Uncertain Optimization Program

U-OP:
$$\min_{\theta} \ell(\theta, \delta), \quad \delta \in \Delta$$

Uncertain Optimization Program

U-OP:
$$\min_{\theta} \ell(\theta, \delta), \quad \delta \in \Delta$$

not well-defined

Uncertainty

Uncertainty

$$\min_{\theta} \left[\max_{\delta \in \Delta} \ell(\theta, \delta) \right] \qquad \text{(worst-case approach)}$$

Uncertainty

$$\min_{\theta} \left[\max_{\delta \in \Delta} \ell(\theta, \delta) \right] \qquad \text{(worst-case approach)}$$

 H_{∞} theory [J.C. Doyle, 1978], [G. Zames, 1981]

 $\min_{\theta} E_{\Delta}\left[\ell(\theta, \delta)\right]$ (average approach)

 $\min_{\theta} E_{\Delta} [\ell(\theta, \delta)]$ (average approach)

stochastic control: $E_{\Delta}[\sum_{t} x_{t}^{T}Qx_{t} + u_{t}^{T}Ru_{t}]$

 $\min_{\theta} E_{\Delta} [\ell(\theta, \delta)]$ (average approach)

stochastic control: $E_{\Delta}[\sum_{t} x_{t}^{T}Qx_{t} + u_{t}^{T}Ru_{t}]$

structural uncertainty: [M. Vidyasagar, 1998]

R.F. Stengel, L.R. Ray, B.R. Barmish, C.M. Lagoa ...

R. Tempo, E.W. Bai, F. Dabbene, P.P. Khargonekar, A. Tikku, ...

$$\begin{aligned} \min_{\theta} \left[\max_{\delta \in \Delta_{\epsilon}} \ell(\theta, \delta) \right] \\ Pr(\Delta_{\epsilon}) &= 1 - \epsilon \end{aligned} \text{ (chance-constrained approach)} \end{aligned}$$

chance-constrained approach:

[A. Charnes, W.W. Cooper, and G.H. Symonds, 1958]

chance-constrained approach:

[A. Charnes, W.W. Cooper, and G.H. Symonds, 1958]

almost neglected by the systems and control community:

- (i) tradition;
- (ii) lack of algorithms.

chance-constrained approach:

[A. Charnes, W.W. Cooper, and G.H. Symonds, 1958]

almost neglected by the systems and control community:

- (i) tradition;
- (ii) lack of algorithms.

- **GOALS:** 1. excite interest in the chance-constrained approach
 - 2. provide algorithmic tools

a look at optimization in the $\theta - \ell$ space

performance cloud

worst-case

average

chance-constrained approach

chance-constrained approach

very hard to solve!

VRC – Variable Robustness Control

performance - violation plot

performance - violation plot

icicle geometry [C.M. Lagoa & B.R. Barmish, 2002]

icicle geometry [C.M. Lagoa & B.R. Barmish, 2002]

... let the problem speak

PART II: Algorithms (convex case)

The "scenario" paradigm

[G. Calafiore & M. Campi, 2005, 2006]

The "scenario" paradigm

SPN = scenario program

SPN is a standard finite convex optimization problem

[G. Calafiore & M. Campi, 2005, 2006]

Fundamental question:

how robust is ℓ^* ?

Example: feedforward noise compensation

Example: feedforward noise compensation

Objective: reduce the effect of noise

Goal:

 $\min var[y_t]$

 $u_t = k_1 w_t + k_2 w_{t-1}$

$$\min_{k_1,k_2} var[y_t] = \frac{(c+bk_1)^2 + (d+bk_2)^2 + 2a(c+bk_1)(d+bk_2)}{1-a^2}$$

$$w_t = WN(0,1)$$

$$ARMAX System:$$

$$y_{t+1} = ay_t + bu_t + cw_t + dw_{t-1}$$

$$u_t = k_1 w_t + k_2 w_{t-1}$$

$$u_t = k_1 w_t + k_2 w_{t-1}$$

$$\min_{k_1, k_2} var[y_t] = \frac{(c+bk_1)^2 + (d+bk_2)^2 + 2a(c+bk_1)(d+bk_2)}{1-a^2}$$

Easy:
$$k_1 = -\frac{c}{b}$$
 $k_2 = -\frac{d}{b}$ $\Rightarrow var[y_t] = 0$

system parameters unknown: $a,b,c,d \in \Delta$

system parameters unknown: $a,b,c,d\in\Delta$

scenario approach:

sample:
$$a_i, b_i, c_i, d_i \in \Delta$$
, $i = 1, 2, \ldots, N$;

solve:

$$\min_{k_1,k_2} \left[\max_i \frac{(c_i + b_i k_1)^2 + (d_i + b_i k_2)^2 + 2a_i (c_i + b_i k_1)(d_i + b_i k_2)}{1 - a_i^2} \right]$$

Fundamental question:

how robust is ℓ^* ?

Fundamental question:

how robust is ℓ^* ?

that is: how guaranteed is ℓ^* against all $\delta \in \Delta$

Fundamental question:

how robust is ℓ^* ?

that is: how guaranteed is ℓ^* against all $\delta \in \Delta$

from the "visible" to the "invisible"

Fix $\epsilon \in (0,1)$ (robustness parameter) $\beta \in (0,1)$ (confidence parameter)

If $N \geq N(\epsilon, \beta) \doteq \frac{2}{\epsilon} \left(\ln \frac{1}{\beta} + n_{\theta} \right)$, then, with probability $\geq 1 - \beta$, ℓ^* is ϵ -level robust.

Fix $\epsilon \in (0,1)$ (robustness parameter)

If
$$N \geq N(\epsilon, \beta) \doteq \frac{2}{\epsilon} \left(\ln \frac{1}{\beta} + n_{\theta} \right)$$
, then,

 ℓ^* is ϵ -level robust.

Fix $\epsilon \in (0,1)$ (robustness parameter) $\beta \in (0,1)$ (confidence parameter)

If $N \geq N(\epsilon, \beta) \doteq \frac{2}{\epsilon} \left(\ln \frac{1}{\beta} + n_{\theta} \right)$, then, with probability $\geq 1 - \beta$, ℓ^* is ϵ -level robust.

Fix $\epsilon \in (0,1)$ (robustness parameter)

If
$$N \ge N(\epsilon) \doteq \frac{2}{\epsilon} (7 \ln 10 + n_{\theta})$$
, then,

 ℓ^* is ϵ -level robust.

Comments

generalization ————— need for structure

Good news: the structure we need

is only convexity

... more comments

$$N = \frac{2}{\epsilon} \left(\ln \frac{1}{\beta} + n_{\theta} \right)$$

- N often tractable by standard solvers
- N easy to compute
- N independent of Pr
- permits to address problems otherwise intractable

$$\min_{k_1, k_2} var[y_t] = \frac{(c+bk_1)^2 + (d+bk_2)^2 + 2a(c+bk_1)(d+bk_2)}{1-a^2}$$

$$\min_{k_1, k_2} var[y_t] = \frac{(c+bk_1)^2 + (d+bk_2)^2 + 2a(c+bk_1)(d+bk_2)}{1-a^2}$$

$$\Delta = \{a, b, c, d : a = \frac{3.5\sigma_1^2 - 0.2}{3\sigma_1^2 + 0.3} \cdot (0.32\sigma_1 + 0.6),$$

$$b = 1 + \frac{\sigma_1\sigma_2^2}{10},$$

$$c = \frac{-0.01 + (\sigma_1 + \sigma_2^2)^2}{0.02 + (\sigma_1 + \sigma_2^2)^2} \cdot \left(1 - \frac{(\sigma_1 - 1)(\sigma_2 - 1)}{2}\right),$$

$$d = \frac{0.05}{0.025 + (\sigma_1 + \sigma_2 - 2)^2},$$

$$(\sigma_1, \sigma_2) \in [-1, 1]^2$$
.

$$\varepsilon = 0.005 \quad \beta = 10^{-7} \quad \longrightarrow \quad N = 5427$$

$$\varepsilon = 0.005 \quad \beta = 10^{-7} \quad \longrightarrow \quad N = 5427$$

sample:
$$a_i, b_i, c_i, d_i \in \Delta$$
, $i = 1, 2, ..., 5427$;

solve:

$$\min_{k_1,k_2} \left[\max_i \frac{(c_i + b_i k_1)^2 + (d_i + b_i k_2)^2 + 2a_i (c_i + b_i k_1)(d_i + b_i k_2)}{1 - a_i^2} \right]$$

$$\varepsilon = 0.005 \quad \beta = 10^{-7} \quad \longrightarrow \quad N = 5427$$

sample:
$$a_i, b_i, c_i, d_i \in \Delta$$
, $i = 1, 2, ..., 5427$;

solve:

$$\min_{k_1,k_2} \left[\max_i \frac{(c_i + b_i k_1)^2 + (d_i + b_i k_2)^2 + 2a_i (c_i + b_i k_1)(d_i + b_i k_2)}{1 - a_i^2} \right]$$

$$k_1^* = -0.9022, \quad k_2^* = -0.9028, \quad \ell^* = 5.8$$

$$\ell^* = 5.8$$

Output variance below 5.8 for all plants but a small fraction (ε = 0.5%)

$$\ell^* = 5.8$$

Output variance below 5.8 for all plants but a small fraction (ε = 0.5%)

Theorem (with S. Garatti)

$$N \ge N(\epsilon, \beta) \doteq \frac{2}{\epsilon} \left(\ln \frac{1}{\beta} + n_{\theta} \right).$$

Then, ℓ_k^* is ϵ_k -level robust where:

$$\epsilon_k = \frac{k}{N} + O\left(\frac{1}{\sqrt{N}}\right)$$

Theorem (with S. Garatti)

$$N \ge N(\epsilon, \beta) \doteq \frac{2}{\epsilon} \left(\ln \frac{1}{\beta} + n_{\theta} \right).$$

Then, ℓ_k^* is ϵ_k -level robust where:

$$\epsilon_k = \frac{k}{N} + O\left(\frac{1}{\sqrt{N}}\right)$$

Comments

• the result does not depend on the algorithm for eliminating k constraints

Comments

• the result does not depend on the algorithm for eliminating k constraints

... do it greedy

Comments

• the result does not depend on the algorithm for eliminating k constraints

... do it greedy

value can be inspected
 violation probability is guaranteed
 by the theorem

performance - violation plot

sample: $a_i, b_i, c_i, d_i \in \Delta$, i = 1, 2, ..., 5427;

solve:

$$\min_{k_1,k_2} \left[\max_i \frac{(c_i + b_i k_1)^2 + (d_i + b_i k_2)^2 + 2a_i(c_i + b_i k_1)(d_i + b_i k_2)}{1 - a_i^2} \right]$$

sample: $a_i, b_i, c_i, d_i \in \Delta$, i = 1, 2, ..., 5427;

solve:

$$\min_{k_1,k_2} \left[\max_i \frac{(c_i + b_i k_1)^2 + (d_i + b_i k_2)^2 + 2a_i (c_i + b_i k_1)(d_i + b_i k_2)}{1 - a_i^2} \right]$$

eliminate $k = 1, 2, \dots$ constraints

$$k = 60$$

 $l_{60}^* = 1.42$
 $\epsilon_{60} = 2.5\%$

Conclusions

The VRC approach is a very general tool to trade robustness for performance

Conclusions

The VRC approach is a very general tool to trade robustness for performance

It is based on a solid and deep theory, but its practical use is very simple

Conclusions

The VRC approach is a very general tool to trade robustness for performance

It is based on a solid and deep theory, but its practical use is very simple

Applications in:

- prediction
- robust control
- engineering
- finance

:

REFERENCES

M.C. Campi and S. Garatti.

Variable Robustness Control: Principles and Algorithms.

Proceedings MTNS, 2010.

M.C. Campi and S. Garatti.

The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs.

SIAM J. on Optimization, 19, no.3: 1211-1230, 2008.

G. Calafiore and M.C. Campi.

Uncertain Convex Programs: randomized Solutions and Confidence Levels.

Mathematical Programming, 102: 25-46, 2005.

G. Calafiore and M.C. Campi.

The Scenario Approach to Robust Control Design.

IEEE Trans. on Automatic Control, AC-51: 742-753, 2006.