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(work done with E. Weyer)

a change of perspective

moving one step ahead …



explaining                    



explaining                    

-45 degrees line



explaining                    

-45 degrees line



explaining                    

-45 degrees line

construct some averages:



explaining           

numerical example:



explaining           

numerical example:



explaining           

numerical example:



explaining           



explaining           



explaining           



explaining           

= not all functions are positive or all are negative



explaining           

= not all functions are positive or all are negative



Theorem (with E. Weyer)



Theorem (with E. Weyer)



Theorem (with E. Weyer)



Theorem (with E. Weyer)



Theorem (with E. Weyer)



Theorem (consistency)

Theorem (with E. Weyer)



in summary:  

for any     :

shrinks around       as N increases

the size of      depends on the strength of 

the noise

with a precise probability(i)

(ii)

(iii)
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one choice is selected at random according 

to a probability P

why is this useful?
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successful algorithm

Definition 1 (successful deterministic algorithm)

An algorithm is successful if, in all situations, it 

provides a correct answer. 

Definition 2 (probabilistically successful algorithm)

An algorithm is successful with probability p if, in all 

situations, its probability to provide a correct answer 

is at least p. 

… a change of perspective:

this offers an extraordinary opportunity to satisfactorily 

solve “hopeless” problems
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comments

P exists in the algorithm

often the chance of failure can be made very small 

(concentration inequalities) 

amazingly powerful results from probability theory 

can be used to assess the probability of success
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computer science

Monte Carlo method (1949) 

optimization

- sorting

- counting

- incremental geometric constructions 

- etc. 

- simulating annealing

- genetic methods

- large-scale convex optimization

- etc. 

little in systems and control

where are we?



uncertain systems

many contributors: 

- aerospace

- adaptive control

- network control 

-etc. 

T. Alamo, E.W. Bai, B.R. Barmish, T. Basar, G. Calafiore, A. Chaouki, F. 

Dabbene,  B. De Shutter, L. El Ghaoui, M. Fu, Y. Fujisaki, S. Garatti, H. 

Ishii, S. Kanev, H. Kimura, C. Lagoa, S.P. Meyn, Y. Oishi, B. Polyak,  M. 

Prandini, P. Shcherbakov, J. Spall, R.F. Stengel, M. Sznaier,  V.B. Tadic, 

R. Tempo, B. Van Roy, M. Verhagen, M. Vidyasagar, K. Zhou

R. Tempo, G. Calafiore, and F. Dabbene (2005). “Randomized 

algorithms for analysis and control of uncertain systems”. 

Springer-Verlag. 

where are we in systems and control?
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(non-convex              Alamo, Camacho, Tempo)    

uncertain systems: design
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Example:  feedforward  noise  compensation

system parameters unknown: 

even a problem as simple as this is difficult for a generic

robust min-max design:
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other problems in robust control

state-feedback stabilization

LPV control

control

control

… and systems theory

model reduction

prediction
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- we need to accept a compromise

- what can we do?

- robust min-max design is hard!



chance-constrained optimization

performance is not 

guaranteed

performance      is
robust
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is superoptimal

The “scenario” paradigm (work done with G. 

Calafiore, S. Garatti)

SPN is a standard finite convex optimization problem

SPN = scenario program
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Fundamental 

question: 

from the “visible” to the “invisible”

How robust is     ?

is it    robust?                  
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Theorem (with S. Garatti – G. Calafiore)

applicable to all convex problems!
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once more, a tough problem has turned into 

a solvable one through randomization, … 

provided we accept an    risk
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… in conclusion

- can prove useful in many more problems in systems and 

control, especially at the boundary of control, communication 

and computation

- it’s just a paradigm; 

each single problem has to be studied separately 

- the probability of success depends on an artificial P

and can be assessed with extraordinarily powerful 

probabilistic tools

- randomization changes our perspective of problem 

solvability



THANK  YOU
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