
THE SCENARIO  APPROACH
to 

STOCHASTIC  OPTIMIZATION

Marco C. Campi
University of Brescia

Italy



“What I like about experience is that it is 
such an honest thing. … You may have 
deceived yourself, but experience is not 
trying to deceive you.”

C.S. Lewis



thanks to:

Algo
Care’

Giuseppe 
Calafiore

Maria Prandini

Bernardo
Pagnoncelli

Federico 
Ramponi

Simone 
Garatti



classification
controller synthesis

portfolio selection
optimization 
program

optimization



uncertain environment

exercise caution

classification
controller synthesis

portfolio selection
optimization 
program

optimization



uncertain optimization:



uncertain optimization:

not a valid mathematical 
formulation



uncertain optimization:

not a valid mathematical 
formulation

often, a description of uncertainty is not 
available, or it is only partially available



scenario-based knowledge:



scenario-based knowledge:

knowledge about uncertainty can be acquired
through experience, 

that is, we look at previous cases, or scenarios, of 
the same problem
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convex in

min-max “scenario” optimization
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comments

generalization need for structure

good news: the structure we need
is only convexity
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… more comments

don’t try to reconstruct the 
real world to answer easy 

questions!

N depends on how complex the decision is via

N does not depend on how complex the “real world” is
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… more comments

N is independent of Pr (distribution-free result)

“What I like about experience is that it is 
such an honest thing. … You may have 
deceived yourself, but experience is not 
trying to deceive you.”

C.S. Lewis



a more general 
theoretical result
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performance  - risk  plot 



performance  - risk  plot 
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generalizations



generalizations

relevanto to: quantitative finance (minimum return)
control with constraints (MPC)
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the theory is still in its infancy
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certainly: it is a wonderful world to explore!

THANK  YOU!

the scenario approach is one way, and a lot 
of work remains to be done

the problem of extracting knowledge from 
observations is perhaps the most central 
issue of all science

… concluding
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